Table of Contents

FIT4010 Advanced topics in algorithms and discrete structures - Semester 1, 2011

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of Delivery</td>
<td>1</td>
</tr>
<tr>
<td>Contact Hours</td>
<td>1</td>
</tr>
<tr>
<td>Workload</td>
<td>1</td>
</tr>
<tr>
<td>Unit Relationships</td>
<td>1</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>1</td>
</tr>
<tr>
<td>Chief Examiner</td>
<td>1</td>
</tr>
<tr>
<td>Campus Lecturer</td>
<td>1</td>
</tr>
<tr>
<td>Clayton</td>
<td>1</td>
</tr>
<tr>
<td>Learning Objectives</td>
<td>2</td>
</tr>
<tr>
<td>Graduate Attributes</td>
<td>2</td>
</tr>
<tr>
<td>Assessment Summary</td>
<td>2</td>
</tr>
<tr>
<td>Teaching Approach</td>
<td>3</td>
</tr>
<tr>
<td>Feedback</td>
<td>3</td>
</tr>
<tr>
<td>Our feedback to You</td>
<td>3</td>
</tr>
<tr>
<td>Your feedback to Us</td>
<td>3</td>
</tr>
<tr>
<td>Previous Student Evaluations of this unit</td>
<td>3</td>
</tr>
<tr>
<td>Required Resources</td>
<td>3</td>
</tr>
<tr>
<td>Unit Schedule</td>
<td>3</td>
</tr>
<tr>
<td>Assessment Policy</td>
<td>4</td>
</tr>
<tr>
<td>Assessment Tasks</td>
<td>4</td>
</tr>
<tr>
<td>Participation</td>
<td>4</td>
</tr>
<tr>
<td>Examinations</td>
<td>5</td>
</tr>
<tr>
<td>Assignment submission</td>
<td>5</td>
</tr>
<tr>
<td>Extensions and penalties</td>
<td>6</td>
</tr>
<tr>
<td>Returning assignments</td>
<td>6</td>
</tr>
<tr>
<td>Resubmission of assignments</td>
<td>6</td>
</tr>
<tr>
<td>Policies</td>
<td>6</td>
</tr>
<tr>
<td>Student services</td>
<td>6</td>
</tr>
</tbody>
</table>
FIT4010 Advanced topics in algorithms and discrete structures - Semester 1, 2011

Algorithms are the most fundamental area for all aspects of computer science and software engineering. Discrete structures, such as those treated in graph theory, set theory, combinatorics and symbolic logic form the mathematical underpinning of the study of algorithms. As well-designed algorithms and data structures are essential for the good performance of an information system, an in-depth understanding of the theoretical properties of algorithms is essential for any computer scientist. As importantly, the theoretical investigation of algorithms leads to a deeper understanding of problem structures and classes of problems and the knowledge of a large variety of algorithm types enables the designer to approach a new problem from different angles. Topics for this unit include: Computability and Complexity, Automata Theory, Advanced Analysis and Design of Algorithms, Parallel and Distributed Algorithms, Numerical Algorithms, Cryptographic algorithms, Spatial/geometric algorithms.

Mode of Delivery

Clayton (Day)

Contact Hours

2 hrs lectures/wk, 1 hr laboratory or tutorial/wk

Workload

- two hour lecture and
- one hour tutorial (or laboratory) (requiring advance preparation)
- a minimum of 3 hours of personal study per one hour of contact time in order to satisfy the reading and assignment expectations.

Unit Relationships

Prerequisites

Completion of the Bachelor of Computer Science or equivalent to the entry requirements for the Honours program. Students must also have enrolment approval from the Honours Coordinator.

Chief Examiner

Kim Marriott

Campus Lecturer

Clayton

Mark Carman

Contact hours: Tuesday 2pm - 3pm or make email appointment
Learning Objectives

At the completion of this unit students will have:

- an improved understanding of the issues involved in designing algorithms in the chosen specialisation area(s) and in analysing their performance;
- an understanding of the mathematical formalisms that are relevant for these algorithms;
- learned to recognise tasks that can be solved with these algorithms;
- the ability to judge the limitations of these methods. With successful completion of the unit the students;
- the ability to choose and apply algorithms and data structures in the chosen specialisation area(s);
- the ability to evaluate the performance of algorithms using formal approaches;
- the ability to design modified algorithms in the chosen area to suit particular problem structures.

Graduate Attributes

Monash prepares its graduates to be:

1. responsible and effective global citizens who:
 a. engage in an internationalised world
 b. exhibit cross-cultural competence
 c. demonstrate ethical values

critical and creative scholars who:

 a. produce innovative solutions to problems
 b. apply research skills to a range of challenges
 c. communicate perceptively and effectively

Assessment Summary

Assignment and Examination, relative weight depending on topic composition. When no exam is given students will be expected to demonstrate their knowledge by solving practical problems and maybe required to give an oral report. This variability is designed to give flexibility to the lecturer to decided the most appropriate form of examination for a given choice of topics.

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Value</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment 1 - Modelling with MiniZinc</td>
<td>50%</td>
<td>21 April 2011</td>
</tr>
<tr>
<td>Assignment 2 - Building an Automated Planning system using SAT, Heuristic Search and/or NLP techniques</td>
<td>50 %</td>
<td>27 May 2011</td>
</tr>
</tbody>
</table>
Teaching Approach

Lecture and tutorials or problem classes

This teaching and learning approach provides facilitated learning, practical exploration and peer learning.

Feedback

Our feedback to You

Types of feedback you can expect to receive in this unit are:

- Informal feedback on progress in labs/tutes
- Graded assignments with comments
- Solutions to tutes, labs and assignments

Your feedback to Us

Monash is committed to excellence in education and regularly seeks feedback from students, employers and staff. One of the key formal ways students have to provide feedback is through SETU, Student Evaluation of Teacher and Unit. The University's student evaluation policy requires that every unit is evaluated each year. Students are strongly encouraged to complete the surveys. The feedback is anonymous and provides the Faculty with evidence of aspects that students are satisfied and areas for improvement.

For more information on Monash's educational strategy, and on student evaluations, see:
http://www.policy.monash.edu/policy-bank/academic/education/quality/student-evaluation-policy.html

Previous Student Evaluations of this unit

If you wish to view how previous students rated this unit, please go to https://emuapps.monash.edu.au/unitevaluations/index.jsp

Required Resources

You will be using the MiniZinc modelling language.

This is available from: http://www.g12.csse.unimelb.edu.au/minizinc/

Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Date*</th>
<th>Activities</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21/02/11</td>
<td>No formal assessment or activities are undertaken in week 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>28/02/11</td>
<td>Introduction to constrained optimization</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>07/03/11</td>
<td>Modelling with MiniZinc</td>
<td>Assignment 1 handed out</td>
</tr>
<tr>
<td>3</td>
<td>14/03/11</td>
<td>Linear Programming</td>
<td></td>
</tr>
</tbody>
</table>
Assessment Policy

To pass a unit which includes an examination as part of the assessment a student must obtain:

- 40% or more in the unit's examination, and
- 40% or more in the unit's total non-examination assessment, and
- an overall unit mark of 50% or more.

If a student does not achieve 40% or more in the unit examination or the unit non-examination total assessment, and the total mark for the unit is greater than 50% then a mark of no greater than 49-N will be recorded for the unit.

Assessment Tasks

Participation

Students are expected to attend lectures and tutorials. However this is not mandatory.

- **Assessment task 1**

 Title:

 Assignment 1 - Modelling with MiniZinc

 Description:

 In this assignment students will model a relatively simple constrained optimization problem using MiniZinc. They will be required to create models that work with a variety of different underlying solving techniques: MIP, CP and SAT.

 They will need to construct test data and then evaluate their models with this data.
Produce a written report that describes their models, test data and the results of the evaluation. The report should also try and explain reasons for differences in behaviour of these models.

Weighting:
50%

Criteria for assessment:
The quality of the models: correctness, efficiency, clarity and documentation.

The quality of the test data: coverage.

The quality of the written report including the quality of the evaluation and analysis of the differences in behaviour.

Due date:
21 April 2011

Assessment task 2

Title:
Assignment 2 - Building an Automated Planning system using SAT, Heuristic Search and/or NLP techniques

Description:
In this assignment students will investigate certain planning domains from the International Planning Competition. They will build a system to encode planning problems from that domain into SAT, Heuristic Search and/or non-linear programming formulations, which can then be solved using the aforementioned techniques.

Students will need to show that their system works as desired (can discover reasonable plans) on a number of different problems (of increasing difficulty) from the chosen domain.

Students will need to produce a written report describing their system and their evaluation of it.

Weighting:
50%

Criteria for assessment:
The quality of the planning system: its ability to find reasonable plans, its speed, and the type (complexity) of problems it can deal with.

The quality of the written report including the quality of the evaluation and analysis.

Due date:
27 May 2011

Examinations

Assignment submission

Assignment coversheets are available via "Student Forms" on the Faculty website: http://www.infotech.monash.edu.au/resources/student/forms/

You MUST submit a completed coversheet with all assignments, ensuring that the plagiarism declaration section is signed.
Extensions and penalties

Submission must be made by the due date otherwise penalties will be enforced.

Returning assignments

Students can expect assignments to be returned within two weeks of the submission date or after receipt, whichever is later

Resubmission of assignments

Resubmission is not allowed unless special consideration applies in which case the course leaders may allow the student to resubmit an assignment.

Policies

Monash has educational policies, procedures and guidelines, which are designed to ensure that staff and students are aware of the University's academic standards, and to provide advice on how they might uphold them. You can find Monash's Education Policies at: http://policy.monash.edu.au/policy-bank/academic/education/index.html

Key educational policies include:

- Plagiarism (http://www.policy.monash.edu/policy-bank/academic/education/conduct/plagiarism-policy.html)
- Special Consideration (http://www.policy.monash.edu/policy-bank/academic/education/assessment/special-consideration-policy.html)
- Grading Scale (http://www.policy.monash.edu/policy-bank/academic/education/assessment/grading-scale-policy.html)
- Discipline: Student Policy (http://www.policy.monash.edu/policy-bank/academic/education/conduct/student-discipline-policy.html)
- Academic Calendar and Semesters (http://www.monash.edu.au/students/key-dates/)
- Orientation and Transition (http://www.infotech.monash.edu.au/resources/student/orientation/)
- and

Student services

The University provides many different kinds of support services for you. Contact your tutor if you need advice and see the range of services available at www.monash.edu.au/students The Monash University Library provides a range of services and resources that enable you to save time and be more effective in your learning and research. Go to http://www.lib.monash.edu.au or the library tab in my.monash portal for more information. Students who have a disability or medical condition are welcome to contact the Disability Liaison Unit to discuss academic support services. Disability Liaison Officers (DLOs) visit all
FIT4010 Advanced topics in algorithms and discrete structures - Semester 1, 2011

Victorian campuses on a regular basis

- Website: http://adm.monash.edu/sss/equity-diversity/disability-liaison/index.html;
- Telephone: 03 9905 5704 to book an appointment with a DLO;
- Email: dlu@monash.edu
- Drop In: Equity and Diversity Centre, Level 1 Gallery Building (Building 55), Monash University, Clayton Campus.

Reading List

There are several recommended books for this subject:

In addition to this, selected research papers will be referenced throughout the unit.
The lecture material will be loosely based on this material and will be available through Moodle.